Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
BMJ Glob Health ; 8(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37984892

RESUMEN

Next-generation sequencing technology has revolutionised pathogen surveillance over the last two decades. However, the benefits are not equitably distributed, with developing countries lagging far behind in acquiring the required technology and analytical capacity. Recent declines in the cost associated with sequencing-equipment and running consumables have created an opportunity for broader adoption. During the COVID-19 pandemic, rapid diagnostics development and DNA sequencing revolutionised the ability to diagnose and sequence SARS-CoV-2 rapidly. Socioeconomic inequalities substantially impact the ability to sequence SARS-CoV-2 strains and undermine a developing country's pandemic preparedness. Low- and middle-income countries face additional challenges in establishing, maintaining and expanding genomic surveillance. We present our experience of establishing a genomic surveillance system at the Aga Khan University, Karachi, Pakistan. Despite being at a leading health sciences research institute in the country, we encountered significant challenges. These were related to collecting standardised contextual data for SARS-CoV-2 samples, procuring sequencing reagents and consumables, and challenges with library preparation, sequencing and submission of high-quality SARS-CoV-2 genomes. Several technical roadblocks ensued during the implementation of the genomic surveillance framework, which were resolved in collaboration with our partners. High-quality genome sequences were then deposited on open-access platforms per the best practices. Subsequently, these efforts culminated in deploying Pakistan's first SARS-CoV-2 phyllo surveillance map as a Nextstrain build. Our experience offers lessons for the successful development of Genomic Surveillance Infrastructure in resource-limited settings struck by a pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Genómica , Pakistán/epidemiología
2.
Pathogens ; 11(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422597

RESUMEN

Transmission dynamics and the maintenance of mammarenaviruses in nature are poorly understood. Using metagenomic next-generation sequencing (mNGS) and RT-PCR, we investigated the presence of mammarenaviruses and co-infecting helminths in various tissues of 182 Mastomys natalensis rodents and 68 other small mammals in riverine and non-riverine habitats in Zambia. The Luna virus (LUAV) genome was the only mammarenavirus detected (7.7%; 14/182) from M. natalensis. Only one rodent from the non-riverine habitat was positive, while all six foetuses from one pregnant rodent carried LUAV. LUAV-specific mNGS reads were 24-fold higher in semen than in other tissues from males. Phylogenetically, the viruses were closely related to each other within the LUAV clade. Helminth infections were found in 11.5% (21/182) of M. natalensis. LUAV-helminth co-infections were observed in 50% (7/14) of virus-positive rodents. Juvenility (OR = 9.4; p = 0.018; 95% CI: 1.47-59.84), nematodes (OR = 15.5; p = 0.001; 95% CI: 3.11-76.70), cestodes (OR = 10.8; p = 0.025; 95% CI: 1.35-86.77), and being male (OR = 4.6; p = 0.036; 95% CI: 1.10-18.90) were associated with increased odds of LUAV RNA detection. The role of possible sexual and/or congenital transmission in the epidemiology of LUAV infections in rodents requires further study, along with the implications of possible helminth co-infection.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36247976

RESUMEN

Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.

4.
Glob Health Action ; 15(1): 2062175, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35730550

RESUMEN

Science education and research have the potential to drive profound change in low- and middle-income countries (LMICs) through encouraging innovation, attracting industry, and creating job opportunities. However, in LMICs, research capacity is often limited, and acquisition of funding and access to state-of-the-art technologies is challenging. The Alliance for Global Health and Science (the Alliance) was founded as a partnership between the University of California, Berkeley (USA) and Makerere University (Uganda), with the goal of strengthening Makerere University's capacity for bioscience research. The flagship program of the Alliance partnership is the MU/UCB Biosciences Training Program, an in-country, hands-on workshop model that trains a large number of students from Makerere University in infectious disease and molecular biology research. This approach nucleates training of larger and more diverse groups of students, development of mentoring and bi-directional research partnerships, and support of the local economy. Here, we describe the project, its conception, implementation, challenges, and outcomes of bioscience research workshops. We aim to provide a blueprint for workshop implementation, and create a valuable resource for bioscience research capacity strengthening in LMICs.


Asunto(s)
Países en Desarrollo , Salud Global , Creación de Capacidad , Humanos , Pobreza , Estudiantes , Universidades
5.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348113

RESUMEN

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Acetato CoA Ligasa/metabolismo , Antimaláricos/química , Inhibidores Enzimáticos/química , Humanos , Malaria/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología
6.
Cell Chem Biol ; 29(5): 824-839.e6, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34233174

RESUMEN

Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Parásitos , Quinolinas , Transportadoras de Casetes de Unión a ATP/genética , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Hemo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Quinolinas/farmacología
7.
Clin Infect Dis ; 74(1): 32-39, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788923

RESUMEN

BACKGROUND: Sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during 22 November to 1 December, 2020, and 10-29 January 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12 124 tests were performed yielding 1099 positives. From these, 928 high-quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.4% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to the "California" or "West Coast" variants (B.1.427 and B.1.429) were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.36 vs 0.29, risk ratio [RR] = 1.28; 95% confidence interval [CI]: 1.00-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.3%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants. Summary: We observed a growing prevalence and modestly elevated attack rate for "West Coast" severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.


Asunto(s)
COVID-19 , SARS-CoV-2 , Genómica , Humanos , Incidencia , San Francisco/epidemiología
8.
medRxiv ; 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33688689

RESUMEN

BACKGROUND: Sequencing of the SARS-CoV-2 viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during November 22-December 2, 2020 and January 10-29, 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12,124 tests were performed yielding 1,099 positives. From these, 811 high quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.9% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to "West Coast" variants were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.357 vs 0.294, RR=1.29; 95% CI:1.01-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.1%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants; however, additional laboratory and epidemiological studies are required to better understand differences between these variants. SUMMARY: We observed a growing prevalence and elevated attack rate for "West Coast" SARS-CoV-2 variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.

9.
Sci Rep ; 11(1): 1888, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479319

RESUMEN

New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Malaria/parasitología , Ratones , Estructura Molecular , Plasmodium/efectos de los fármacos , Plasmodium/parasitología , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/parasitología , Plasmodium falciparum/fisiología , Especificidad de la Especie
11.
Sci Rep ; 10(1): 15043, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929126

RESUMEN

Here, we report a pilot study paving the way for further single cell genomics studies in Leishmania. First, the performances of two commercially available kits for Whole Genome Amplification (WGA), PicoPLEX and RepliG were compared on small amounts of Leishmania donovani DNA, testing their ability to preserve specific genetic variations, including aneuploidy levels and SNPs. We show here that the choice of WGA method should be determined by the planned downstream genetic analysis, PicoPLEX and RepliG performing better for aneuploidy and SNP calling, respectively. This comparison allowed us to evaluate and optimize corresponding bio-informatic methods. As PicoPLEX was shown to be the preferred method for studying single cell aneuploidy, this method was applied in a second step, on single cells of L. braziliensis, which were sorted by fluorescence activated cell sorting (FACS). Even sequencing depth was achieved in 28 single cells, allowing accurate somy estimation. A dominant karyotype with three aneuploid chromosomes was observed in 25 cells, while two different minor karyotypes were observed in the other cells. Our method thus allowed the detection of aneuploidy mosaicism, and provides a solid basis which can be further refined to concur with higher-throughput single cell genomic methods.


Asunto(s)
Biología Computacional/métodos , Genoma de Protozoos , Cariotipificación/métodos , Leishmania/genética , Análisis de la Célula Individual/métodos , Aneuploidia , Citometría de Flujo/métodos
12.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527780

RESUMEN

The complete genome sequence of a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) isolate obtained from a nasopharyngeal swab from a patient with COVID-19 in Bangladesh is reported.

13.
Cell Chem Biol ; 27(7): 806-816.e8, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32359426

RESUMEN

The search for antimalarial chemotypes with modes of action unrelated to existing drugs has intensified with the recent failure of first-line therapies across Southeast Asia. Here, we show that the trisubstituted imidazole MMV030084 potently inhibits hepatocyte invasion by Plasmodium sporozoites, merozoite egress from asexual blood stage schizonts, and male gamete exflagellation. Metabolomic, phosphoproteomic, and chemoproteomic studies, validated with conditional knockdown parasites, molecular docking, and recombinant kinase assays, identified cGMP-dependent protein kinase (PKG) as the primary target of MMV030084. PKG is known to play essential roles in Plasmodium invasion of and egress from host cells, matching MMV030084's activity profile. Resistance selections and gene editing identified tyrosine kinase-like protein 3 as a low-level resistance mediator for PKG inhibitors, while PKG itself never mutated under pressure. These studies highlight PKG as a resistance-refractory antimalarial target throughout the Plasmodium life cycle and promote MMV030084 as a promising Plasmodium PKG-targeting chemotype.


Asunto(s)
Antimaláricos/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Resistencia a Medicamentos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antimaláricos/química , Antimaláricos/metabolismo , Sitios de Unión , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/parasitología , Humanos , Imidazoles/química , Estadios del Ciclo de Vida/efectos de los fármacos , Metabolómica , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
14.
ACS Infect Dis ; 6(4): 613-628, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32078764

RESUMEN

Most phenotypic screens aiming to discover new antimalarial chemotypes begin with low cost, high-throughput tests against the asexual blood stage (ABS) of the malaria parasite life cycle. Compounds active against the ABS are then sequentially tested in more difficult assays that predict whether a compound has other beneficial attributes. Although applying this strategy to new chemical libraries may yield new leads, repeated iterations may lead to diminishing returns and the rediscovery of chemotypes hitting well-known targets. Here, we adopted a different strategy to find starting points, testing ∼70,000 open source small molecules from the Global Health Chemical Diversity Library for activity against the liver stage, mature sexual stage, and asexual blood stage malaria parasites in parallel. In addition, instead of using an asexual assay that measures accumulated parasite DNA in the presence of compound (SYBR green), a real time luciferase-dependent parasite viability assay was used that distinguishes slow-acting (delayed death) from fast-acting compounds. Among 382 scaffolds with the activity confirmed by dose response (<10 µM), we discovered 68 novel delayed-death, 84 liver stage, and 68 stage V gametocyte inhibitors as well. Although 89% of the evaluated compounds had activity in only a single life cycle stage, we discovered six potent (half-maximal inhibitory concentration of <1 µM) multistage scaffolds, including a novel cytochrome bc1 chemotype. Our data further show the luciferase-based assays have higher sensitivity. Chemoinformatic analysis of positive and negative compounds identified scaffold families with a strong enrichment for activity against specific or multiple stages.


Asunto(s)
Antimaláricos/aislamiento & purificación , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Quimioinformática/métodos , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Plasmodium falciparum/genética , Bibliotecas de Moléculas Pequeñas/química
15.
Cell Chem Biol ; 27(2): 158-171.e3, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31813848

RESUMEN

We report detailed susceptibility profiling of asexual blood stages of the malaria parasite Plasmodium falciparum to clinical and experimental antimalarials, combined with metabolomic fingerprinting. Results revealed a variety of stage-specific and metabolic profiles that differentiated the modes of action of clinical antimalarials including chloroquine, piperaquine, lumefantrine, and mefloquine, and identified late trophozoite-specific peak activity and stage-specific biphasic dose-responses for the mitochondrial inhibitors DSM265 and atovaquone. We also identified experimental antimalarials hitting previously unexplored druggable pathways as reflected by their unique stage specificity and/or metabolic profiles. These included several ring-active compounds, ones affecting hemoglobin catabolism through distinct pathways, and mitochondrial inhibitors with lower propensities for resistance than either DSM265 or atovaquone. This approach, also applicable to other microbes that undergo multiple differentiation steps, provides an effective tool to prioritize compounds for further development within the context of combination therapies.


Asunto(s)
Antimaláricos/farmacología , Metaboloma/efectos de los fármacos , Metabolómica , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Antimaláricos/metabolismo , Atovacuona/química , Atovacuona/metabolismo , Atovacuona/farmacología , Diseño de Fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Quinolinas/farmacología
16.
PLoS Negl Trop Dis ; 13(12): e0007900, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830038

RESUMEN

Whole genome sequencing (WGS) is increasingly used for molecular diagnosis and epidemiology of infectious diseases. Current Leishmania genomic studies rely on DNA extracted from cultured parasites, which might introduce sampling and biological biases into the subsequent analyses. Up to now, direct analysis of Leishmania genome in clinical samples is hampered by high levels of human DNA and large variation in parasite load in clinical samples. Here, we present a method, based on target enrichment of Leishmania donovani DNA with Agilent SureSelect technology, that allows the analysis of Leishmania genomes directly in clinical samples. We validated our protocol with a set of artificially mixed samples, followed by the analysis of 63 clinical samples (bone marrow or spleen aspirates) from visceral leishmaniasis patients in Nepal. We were able to identify genotypes using a set of diagnostic SNPs in almost all of these samples (97%) and access comprehensive genome-wide information in most (83%). This allowed us to perform phylogenomic analysis, assess chromosome copy number and identify large copy number variants (CNVs). Pairwise comparisons between the parasite genomes in clinical samples and derived in vitro cultured promastigotes showed a lower aneuploidy in amastigotes as well as genomic differences, suggesting polyclonal infections in patients. Altogether our results underline the need for sequencing parasite genomes directly in the host samples.


Asunto(s)
Genotipo , Leishmania/clasificación , Leishmania/genética , Leishmaniasis Visceral/parasitología , Manejo de Especímenes/métodos , Secuenciación Completa del Genoma/métodos , Adolescente , Niño , Preescolar , ADN Protozoario/química , ADN Protozoario/genética , Humanos , Lactante , Leishmania/aislamiento & purificación , Nepal
17.
Science ; 362(6419)2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523084

RESUMEN

To discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.


Asunto(s)
Antimaláricos/farmacología , Quimioprevención , Descubrimiento de Drogas , Malaria/prevención & control , Plasmodium/efectos de los fármacos , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Mitocondrias/efectos de los fármacos , Plasmodium/crecimiento & desarrollo
19.
J Am Chem Soc ; 140(36): 11424-11437, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30107725

RESUMEN

The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human ß2 and ß5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.


Asunto(s)
Artemisininas/farmacología , Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Artemisininas/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Inhibidores de Proteasoma/química , Relación Estructura-Actividad
20.
Artículo en Inglés | MEDLINE | ID: mdl-29941635

RESUMEN

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...